Separatio
Abstract

Nisansala Yatapanage

with CIiff Jones and Andrius Velykis
Newcastle University

- N

@ Issues of separation are well handled by
Concurrent Separation Logic.

B (at least) Some examples can be clearly
developed using layers of abstraction.

8 Two examples: Reynolds’ in-place list reversal
algorithm and concurrent DOM trees.

. In-place List Reversal.

Originally presented by John Reynolds

) 2 |[=»| 3 |=| 4 |==»| 5

|
0
o »®

nil

nil

. In-place List Reversal.

Originally presented by John Reynolds

—

=> 3 |[=»| 4 |=»| 5

I 1
IR

nil

. In-place List Reversal.

Originally presented by John Reynolds

2 |=| 3 |[&=» 4 |=| 5

R
DENOC

. In-place List Reversal.

Originally presented by John Reynolds

P
SIS

3 || 4 || 5

. In-place List Reversal.

Originally presented by John Reynolds

2 =y 4 |/ 5

RN
1) DRO

. In-place List Reversal.

Originally presented by John Reynolds

& 2 3 |[=) 4 |[=| 5

N

Nil

IS4
o DRD

. In-place List Reversal.

Originally presented by John Reynolds

1 | <=

T
SN

—y| 4 |==»| 5

. In-place List Reversal.

Originally presented by John Reynolds

1 | <= 2 3 |[=) 4 |[=| 5

J

Nil

[71
» O

.Abstract List Reversa.

while s is not empty do
r' = head of s joined to r
s' = tail of s

end while

Postcondition: r’ = rev(s)

@ \

. Sepa ratio'

@ In the abstract specification, r and s are
assumed to be distinct.

@ In normal data reification, the separation is
preserved.

. Sepa ration.

@ In the abstract specification, r and s are
assumed to be distinct.

@ In normal data reification, the separation is
preserved.

® For Reynold’s algorithm, we are reifying r and s
onto parts of the same vector.

® This leads to a new form of reification:
preservation of separation.

. Implementation l

The separation has to be stated as a predicate
in the invariant.

The implementation can be shown to satisfy the
abstract specification.

a —> g

retr T T retr

c —> '

Proof — retr

retr : X, — 2,
retr(mk-X,(m.,i,7)) 2
mk->,(gather(i, m), gather(j, m))

gather(n.m) 2

if n = nal
then ||
else let (p)=m(n) in

(n) i
0] " gather(p, m)

o

r

nil

head of s

—

s' = tail of s

I 1
oG

tail of s

oot

At each step, recall: r' = head of s joined to r;

—>

.Concu rrent DOM Tree'

@ Philippa Gardner & colleagues published proofs
using separation logic of sequential algorithms
for updating DOM trees.

.Concu rrent DOM Trees.

@ Philippa Gardner & colleagues published proofs
using separation logic of sequential algorithms
for updating DOM trees.

@ Our first attempt at abstraction used recursive
structures.

@8 This wasn’t suitable as we needed NodelD’s to
match with DOM.

a

'oncu rrent DOM Tree.

Abstract trees Each node has data
and a list of children.

Q Separation is implied by:
v

Well-foundedness of the

child to parent relation,

‘ & ensuring no loops.

No child has more
than one parent.

.bstract Sequential Ren-

Pre: parent exists,
child is one of parent’s
children

.bstract Sequential Ren.

Pre: parent exists,
child is one of parent’s

—‘g

@

children

Post: The final state
is the same except for
that sub-tree
removed from its
parent.

.)m sequential to concurr.

The sequential postcondition can state equalities
about the whole system.

.om sequential to concurr'

The sequential postcondition can state equalities
about the whole system.

@ With concurrency, other processes may be
operating simultaneously.

.om sequential to concurr'

The sequential postcondition can state equalities
about the whole system.

With concurrency, other processes may be
operating simultaneously.

The postcondition is weakened to form the
concurrent postcondition and the guar.

.stract Concurrent Ren-

.stract Concurrent Rel-

.stract Concurrent Ren.

The abstract post is now

Q split into the post and guar:
=

.bstract Concurrent Rem-

The abstract post is now
split into the post and guar:

post: child is removed
from parent’s children
list. (Nothing about
the rest of the tree).

.bstract Concurrent Rem-

The abstract post is now
split into the post and guar:

post: child is removed
from parent’s children
list. (Nothing about
the rest of the tree).

guar: this process will
only change parent’'s
children

.bstract Concurrent Rem-

The abstract post is now
split into the post and guar:

post: child is removed
from parent’s children
list. (Nothing about
the rest of the tree).

guar: this process will
only change parent’'s
children

rely: parent’s children

O won’t change

Each node has data
and pointers to its

. Data Reificatio.\
;O
sbe

e Q

. Data Reificatio'\
Each node has data

A AL
F L X
A\ 1A
@ @

-

. Data Reificatio'

Q Each node has data
, \\ and pointers to its

[f parent, first child,

é%bQ %ast child,

. Data Reificatim.

Q Each node has data
and pointers to its
,[1} \\ parent, first child,

previous sibling
'E" 8‘

N
-

. Data Reificatim.

O Each node has data
, \\ and pointers to its

[f parent, first child,

p@@ last child,
previous sibling
¢y %ﬁ

and next sibling.
o=

N
-

. Reified Concurrent Rem'

rely: parent’s children
won’t change, child’s
parent & siblings
won't change.

. Reified Concurrent Remc.

rely: parent’s children

won’t change, child’s
\\ parent & siblings
won't change.

[]

guar: This may only

|
I 5’ change child’s parent &

sibling pointers, parent'’s
first/last child pointers.

. Reified Concurrent Remo.

rely: parent’s children
won’t change, child’s
parent & siblings
won't change.

guar: This may only
change child’s parent &
sibling pointers, parent'’s
first/last child pointers.

post: child’'s parent, prev & next siblings are nil
and the sibling pointers are updated.

Updating sibli'

Updating siblil.

Updating siblir.

Updating siblir.

g Rely/guar has been used on lock-free
algorithms, e.qg. 4-slot

a

g Rely/guar has been used on lock-free
algorithms, e.g. 4-slot

g8 For this algorithm, the rely/guar conditions can
be satisfied by locking the parent.

Rely/guar has been used on lock-free
algorithms, e.g. 4-slot

For this algorithm, the rely/guar conditions can
be satisfied by locking the parent.

Finer-grained locking can be accomplished by
using special sentinel nodes at the corners.

/. Y

. Conclusion-

® Handling separation by reasoning with layers of
abstraction seems promising.

a

. Conclusion'

® Handling separation by reasoning with layers of
abstraction seems promising.

@ For concurrency, the sequential postcondition
can be weakened to form the concurrent
postcondition and the guar condition.

. Conclusions.

® Handling separation by reasoning with layers of
abstraction seems promising.

@ For concurrency, the sequential postcondition
can be weakened to form the concurrent
postcondition and the guar condition.

= The process was demonstrated from abstract
sequential trees to abstract concurrent trees to

reified concurrent trees.

