
Separation as 
Abstraction

Nisansala Yatapanage 
with Cliff Jones and Andrius Velykis

Newcastle University



Issues of separation are well handled by 
Concurrent Separation Logic.

(at least) Some examples can be clearly 
developed using layers of abstraction.

Two examples: Reynolds’ in-place list reversal 
algorithm and concurrent DOM trees.



In-place List Reversal

Originally presented by John Reynolds

i
j

k

1 2 3 4 5

nil

nil



In-place List Reversal

1 2 3 4 5

i
j

k

nil

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

i k

nil

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

ij k

nil

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

j

nil

i k

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

k

nil

j i

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

ij

nil

k

Originally presented by John Reynolds



In-place List Reversal

1 2 3 4 5

ij

nil

k

Originally presented by John Reynolds



Abstract List Reversal

Postcondition: r’ = rev(s)

while s is not empty do
r' = head of s joined to r
s' = tail of s

end while



Separation

In the abstract specification, r and s are 
assumed to be distinct.

In normal data reification, the separation is 
preserved.



Separation

In the abstract specification, r and s are 
assumed to be distinct.

In normal data reification, the separation is 
preserved.

For Reynold’s algorithm, we are reifying r and s 
onto parts of the same vector.

This leads to a new form of reification: 
preservation of separation.



Implementation

The separation has to be stated as a predicate 
in the invariant.

The implementation can be shown to satisfy the 
abstract specification.

a a'

c c'

retr retr



Proof – retr



Proof

At each step, recall: r' = head of s joined to r;
s' = tail of s

1 2 3 4 5

ij

nil

head of sr tail of s



Concurrent DOM Trees

Philippa Gardner & colleagues published proofs 
using separation logic of sequential algorithms 
for updating DOM trees.



Concurrent DOM Trees

Philippa Gardner & colleagues published proofs 
using separation logic of sequential algorithms 
for updating DOM trees.

Our first attempt at abstraction used recursive 
structures.

This wasn’t suitable as we needed NodeID’s to 
match with DOM.



Concurrent DOM Trees

Abstract trees Each node has data 
and a list of children.

Well-foundedness of the 
child to parent relation, 
ensuring no loops.

No child has more 
than one parent.

Separation is implied by:



Abstract Sequential Remove

Pre: parent exists,
child is one of parent’s 
children



Abstract Sequential Remove

Pre: parent exists,
child is one of parent’s 
children

Post: The final state 
is the same except for 
that sub-tree 
removed from its 
parent.



From sequential to concurrent

The sequential postcondition can state equalities 
about the whole system.



From sequential to concurrent

The sequential postcondition can state equalities 
about the whole system.

With concurrency, other processes may be 
operating simultaneously. 



From sequential to concurrent

The sequential postcondition can state equalities 
about the whole system.

With concurrency, other processes may be 
operating simultaneously. 

The postcondition is weakened to form the 
concurrent postcondition and the guar.



Abstract Concurrent Remove



Abstract Concurrent Remove



Abstract Concurrent Remove

The abstract post is now 
split into the post and guar:



Abstract Concurrent Remove

The abstract post is now 
split into the post and guar:

post: child is removed 
from parent’s children 
list. (Nothing about 
the rest of the tree).



Abstract Concurrent Remove

The abstract post is now 
split into the post and guar:

guar: this process will 
only change parent’s 
children

post: child is removed 
from parent’s children 
list. (Nothing about 
the rest of the tree).



Abstract Concurrent Remove

The abstract post is now 
split into the post and guar:

rely: parent’s children 
won’t change

guar: this process will 
only change parent’s 
children

post: child is removed 
from parent’s children 
list. (Nothing about 
the rest of the tree).



Data Reification

Each node has data 
and pointers to its



Data Reification

Each node has data 
and pointers to its

parent,



Data Reification

Each node has data 
and pointers to its

parent, first child,



Data Reification

Each node has data 
and pointers to its

parent, first child,

last child,



Data Reification

Each node has data 
and pointers to its

parent, first child,

last child,

previous sibling



Data Reification

Each node has data 
and pointers to its

parent, first child,

last child,

previous sibling

and next sibling.



Reified Concurrent Remove

rely: parent’s children 
won’t change, child’s 
parent & siblings 
won’t change.



Reified Concurrent Remove

rely: parent’s children 
won’t change, child’s 
parent & siblings 
won’t change.

guar: This may only 
change child’s parent & 
sibling pointers, parent’s 
first/last child pointers.



Reified Concurrent Remove

rely: parent’s children 
won’t change, child’s 
parent & siblings 
won’t change.

guar: This may only 
change child’s parent & 
sibling pointers, parent’s 
first/last child pointers.

post: child’s parent, prev & next siblings are nil
and the sibling pointers are updated.



Updating siblings

a

b dc



Updating siblings

a

b d

a

b dc



Updating siblings

a

b d

a

b dc

a

b dc



Updating siblings

a

b d

a

b dc

a

b dc

a

dc



Locking

Rely/guar has been used on lock-free 
algorithms, e.g. 4-slot



Locking

Rely/guar has been used on lock-free 
algorithms, e.g. 4-slot

For this algorithm, the rely/guar conditions can 
be satisfied by locking the parent.



Locking

Rely/guar has been used on lock-free 
algorithms, e.g. 4-slot

For this algorithm, the rely/guar conditions can 
be satisfied by locking the parent.

Finer-grained locking can be accomplished by 
using special sentinel nodes at the corners.



Conclusions

Handling separation by reasoning with layers of 
abstraction seems promising.



Conclusions

Handling separation by reasoning with layers of 
abstraction seems promising.

For concurrency, the sequential postcondition
can be weakened to form the concurrent 
postcondition and the guar condition.



Conclusions

Handling separation by reasoning with layers of 
abstraction seems promising.

For concurrency, the sequential postcondition
can be weakened to form the concurrent 
postcondition and the guar condition.

The process was demonstrated from abstract 
sequential trees to abstract concurrent trees to 
reified concurrent trees.


